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By Kevin Kelly

Be careful. Watch out for that spider!” exclaims the
boyish figure fidgeting in front of the computer screen.
He turns to his audience. “Spiders are thoroughly bad
news in this world.” Like Peter Pan leading an expedi-
tion to Never-never Land, the grown-up John Holland
can hardly contain his enthusiasm as he guides his listen-
ers through a hi-res simulation of an ant colony. “Re-
member,” he cautions, “we’re the yellow ant.”

The audience nods in appreciation. A simulated ant
colony is the latest adaptive system introduced by Hol-
land this week. Twenty scientists of many stripes—bi-
ologists, political scientists, mathematicians, and com-
puter specialists—study the demo intently. Then they
begin free-associating what they’ve seen with similar
phenomenon in their own specialities. As they talk they
struggle to translate the phenomenon of simulation into
as many scientific dialects as possible, and then to unify
the lingo. After an a hour they’ll move on to another
deeply complex subject—another complex adaptive sys-
tem—and repeat the brainstorming, the translations, and
the attempt at synthesis. Today, ant colonies; tomorrow,
population genetics; the day after, alliances in World
War II. During two weeks of freewheeling discussions,
someone of the 20 present is sure to flesh out an idea or
two later with a mathematical formulation or experi-
ment. Eventually they’ll report their findings back to this
unique interdisciplinarian group of graduate students and
professors dedicated to exploring the vast no-man’s land
between official branches of science.

Santa Fe—Michigan Collaboration

This could only be a convening of the Santa Fe
Institute, if it weren’t in Ann Arbor, Michigan. But it is
definitely Michigan, during an unseasonably bitter cold
two weeks in November 1991, and it is definitely a Santa
Fe gathering. John Holland, with the encouragement of
the Santa Fe Institute, has incubated a prototype Santa
Fe collaboration at the University of Michigan.

Participants in the collaboration investigate a heady
mix of interwoven topics. Currently, Arthur Burks ex-
plores the tradeoff between short-term and long-term
goals in different types of machine learning. Carl Simon
investigates the role of interacting populations in epi-
demics. Michael Cohen probes the structure of human
organizations to see how groups routinely learn, espe-
cially in surprising environments. Melanie Mitchell evalu-
ates the characteristic components of complex adaptive
structures using a simple but versatile learning system
she developed called CopyCat. Rick Riolo examines
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classifier systems—a type of adaptive algorithm—for
evidence of internal models which allow the system to
anticipate change. Once a week, this group meets to
critique their ideas. And for the second year in a row, the
University of Michigan and Santa Fe Institute have spon-
sored a two-week colloquium where collaboration mem-
bers and other Santa Fe Institute regulars can swap re-
ports of their current work.

Complex Adaptive System Traits

Some common threads crisscross this year’s semi-
nars. A few themes keep emerging with enough bite that
John Holland takes out a red grease pencil and in the
glare of the overhead projector makes a quick catalog of
candidates for distinctive characteristics of complex adap-
tive systems. I’ve expounded upon his bullets with a
synthesis derived from conversations with researchers
individually, from debates overheard among them, and
from attendance at parts of the two-week colloquia. The
short list of traits of complex adaptive systems follows.

Perpetual Novelty
You know you’ve got a complex adaptive system on

your hands when it continues to surprise you no matte™ ™

how long its been running. The author of the yellow an.
simulation (sold as a commercial game) reports that he is
amazed by the large number of completely unexpected
novel tricks other users have found in his world. They
write and tell him how clever he is. In reality he is clever
by programming a type of connectivity which generates
viable surprises. Perpetual novelty is highly desired in a
game, but perpetual novelty is sheer disaster in aviation
systems or telephone networks. To control perpetual
novelty—where and when novelty is wanted—is a fun-
damental challenge for this new science.

Resilience

The capacity for self-repair is a hallmark of biology,
and a goal for synthetic adaptive systems such as net-
works or computer models. Even if a system cannot
mend itself, if it can degrade gracefully—limp along
instead of dying—it’s got the spunk of a complex adap-
tive system. Modelers praise a network that can work
around troubles and failure, the way a computer hard
disk will automatically reformat around its bad sectors.
They call it “robust.” The more adaptive a system is the
more robust and resilient, and presumably vice versa.

Emergence of the Aggregate

The whole is greater than the sum of the parts. It 3

an old idea that is presently gaining experimental proo1




and precision. When is the whole greater? Under what
conditions? Does the sequence in which parts are added
make any difference? What causes a complex system to
unravel? Bob Axelrod notes that a whole does not break
up randomly, but fails by splintering along hierarchical
boundaries. Look at the former Soviet Union, he says. It
first broke up into republics, then into autonomous re-
gions, and will lastly unhinge into ethnic enclaves. One
critical challenge on this frontier, John Holland says, is
understanding the way in which the whole begins to
influence and modify the parts that sum it. Over time, a
cell joining one body will diverge in operation from a
cell joining no body. A whole can unravel into a differ-
ent set of sub-parts than the set that first created it. To
use the Soviet example, the former U.S.S.R. may un-
ravel into a different set of ethnic enclaves from those
which originally comprised the Union.

Formation of Individuality

Another mark of living things is that each has its
own individuality. The components of highly adaptive
systems are arranged in nested hierarchies, which breed
slightly unique behaviors as the parts are altered or rear-
ranged. In contrast, an unliving electrical appliance or
‘rotein molecule can have complication without indi-
viduality. Substantial alteration of their complicated parts
produces drastically different output of the whole. The
deep hierarchy stacked up in a natural organism—mol-
ecules, cells, tissues, and organs—compensates for sig-
nificant variation of parts. Sub-sub-structures can differ
slightly while still generating similar top behavior. A
complex system such as a peacock may vary in the exact
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A whole can unravel into a different set of
sub-parts than the set that first created it.
...the former U.S.S.R. may unravel into a
different set of ethnic enclaves from those

which originally comprised the Union.
]

arrangement or numbers of muscle, feather, and brain
cells. Every peacock acts both like a standard peacock
system and a unique peacock personality. At the same
time, the combination of hierarchical dynamics and indi-
vidual variation permits the system to generate an iden-
tity of self—a sense of “me” and “not me”—in the way
skin grafts are rejected by nearly identical siblings. Hol-
land says, “Identity of individuality is an emergent prop-

__——erty of these systems.” He points out that the emergence

f individual identity forms a structure upon which new
evolutionary pressures can focus. For example, the emer-

gent identity of a colony draws natural selection onto an
additional layer, that of the individual colony, and alters
the character of the cells constituting the new colony.

Internal Models

There is a suspicion among researchers that the
hierarchical architecture of a complex adaptive system
permits it to represent a level of abstraction internally. A
high-order representation persists longer than the flux of
changing influences in lower-level structures. Thus, a
dynamic representation serves as a platform for limited
anticipation of the future. To anticipate may, in fact, be
one of the chief benefits of complex systems. Even the
mildest look-ahead ability speeds learning and adapta-
tion. As an example, Stephanie Forrest cites the immune
system, which models (almost mirrors) the disease envi-
ronment in anticipation of an infection. The immune
apparatus, she says, “is a very massively parallel, distrib-
uted system.” It can remember for over 50 years, which
is truly astounding since the body is turning over all its
molecules weekly. It also means this memory model
isn’t residing anywhere in particular. Over evolutionary
time, the immune system has abstracted the notion of
infectious disease and represented it in a very distributed
way so that the system itself anticipates diseases it has
never seen.

Non-Zero Sum

Game theory was the very first attempt to grasp
complex adaptive systems. von Neumann invented game
theory at almost the same moment he helped cook up
computers. One insight from game theory has penetrated
science and contemporary thought: the distinction be-
tween zero- and non-zero—sum games. In a zero-sum
game, every win is offset by a loss; if there is a winner,
there must be a loser. In a non-zero—sum game, both
sides can loose, or both sides can win. Complex adaptive
systems tend to be non-zero—sum games. The emergence
of beneficial properties arising from adversarial parts—
take wealth in capitalism as an example—is the first clue
that the conservation of gain is broken. Conventional
theories of economics and ecology stress the way the
game secks equilibrium, winner balancing loser, as if on
a pivoting scale. The new view stresses the non-equilib-
rium aspects of complex systems. The non-zero—sum,
non-equilibrium aspect of life as a system is why more
varieties of organisms on a planet increase the opportu-
nity for yet more new species, rather than decrease op-
portunity for diversity, as in a zero-sum game. In this
open-ended kind of a system, non-equilibria moves can
have a big impact. Bob Axelrod gave the example of
Gorbachov’s fundamental insight, “that the Soviets could
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get more security with fewer tanks rather than with more
tanks. They threw away 10,000 tanks unilaterally, and
made it harder for U.S. and Europe to have a big military
budget.”

An Exploration Tradeoft

The price of learning is a sacrifice in efficiency. A
complex adaptive system will have one side that seeks
new ways to survive (exploration, learning) and one side
that seeks to maximize what it knows (exploitation, effi-
ciency). Every act of new learning diverts resources
from exploitation of the known. Holland defines the
chief task of complex systems as coming up with a
mechanism that can optimally balance these diverging
poles. Says he, “If I spend all my time looking for the
very best rule, I might never get around to using the rules
I already have to their best. On the other hand, I’ll never
discover a better rule while only exploiting the rules I
already have.” Each type of discovery is rooted in a
different mathematical structure, which is also to say
that different structures of discovery are best suited for
different types of problems. Melanic Mitchell has em-
barked on a project to characterize the types of problems
that genetic algorithms are best for. For instance, one of
the drawbacks of genetic algorithms, and even organic
genetic crossover in living populations, is that the pro-
cess tends to converge the population upon a uniform
type, so that organisms and solutions begin to look simi-
lar to each other. In other words, genetic algorithms
emphasize exploitation of the knowledge represented by
all the genes inside a population, rather than exploring
outside the known gene pool. Mitchell can show on her
model how a learning system can get stuck in “brain-
storming mode” just as easily as it can get stuck in
overspecialization. How might genetic algorithms, or
neural nets, and other kinds of structured searches, be
combined in appropriate balance to best solve a particu-
lar type of problem? A formal answer to this general
problem would go a long way not only in artificial intel-
ligence and artificial life fields, but also in practical
application to human institutions such as corporations,
which must set hard priorities in funding research either
for the short term (exploitation) or the long term
(exploration).

Collaboration Foci

By no means are these eight the only features of
complex adaptive systems. Nor are these systems the
only target of the Michigan group and the Santa Fe
Institute. The collaboration focuses on the subject of
complex systems that adapt and learn because it is suffi-
ciently broad to interest the needed multidisciplinary

...universities are no longer the natural
repository for long-range stuff. ...One of
the reasons you find such good people
clustering around the Santa Fe Institute is
it's one of the few places where you can
do this kind of long-term, long-horizon

research.
|

crowd, sufficiently specific to hatch tough questions,
and because it threads through many of the major prob-
lems SFI is addressing, such as: how does the global
economy work, what is the nature of evolution, for what
good can we use vast computational power? As SFI
president Ed Knapp noted in his address to the
colloquium, “if we could but know one system well,
we’d have a start on the others.”

In many ways the organization of the Michigan/SFI
collaboration reflects the unorthodox organization that
has proven to make the Santa Fe Institute so successful.
In both locations there are no departments, no positions,
no permanent research staff, no day-to-day responsibili-
ties for researchers beyond trying out embryonic inter-
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ests and following them up. Participants have a home=™,

institution, where they are prominent. In Knapp’s words,
Santa Fe Institute and collaborations are sort of a “home-
less idea.” A small group of participants hole up together
to practice a “collaboration demanded by proximity.” In
the end the universities affiliated with the participants
benefit by these ad hoc convenings.

John Holland agrees. “Because of a desperate chas-
ing of dollars for cash flow, universities are no longer
the natural repository for long-range stuff. It’s even worse
at the top universities because of fights over overhead
costs. Almost all the really long-horizon research that I
know going on in universities is bootleg, one way or
another.” Holland isn’t exaggerating. One prestigious
East Coast school stated in their documents that a three-
to five-year horizon is the farthest that they’ll look ahead.
“This is going to cost this country tremendously. One of
the reasons you find such good people clustering around
the Santa Fe Institute is it’s one of the few places where
you can do this kind of long-term, long-horizon research.
They really encourage it.”

Beginning with the pilot program, the Santa Fe In-
stitute is trying to export this long view back into its
“natural repository” of the universities. One who wel-
comes this approach is Joseph White, Dean of the Busi-
ness School of University of Michigan, a sponsor of the
colloquium. “We are a complex non-adaptive institt’
tion,” he sighs. “We need groups like this.” )




