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Nature Conformable to Herself

What follows is a talk given by Murray Gell-Mann at the
1992 Complex Systems Winter School

More than thirty years ago, [ was the first visiting
professor at the College de France in Paris, with an
office in the laboratory of experimental physics. I no-
ticed that my experimental colleagues were frequently
drawing little pictures in their notebooks, which I as-
sumed were diagrams of experimental apparatus. But it
turned out that those drawings were mostly of a gallows
for hanging the vice-director of the lab, whose rigid
ideas drove them crazy.

I got to know the sous-directeur, and talked with
him on various subjects, one of which was Project Ozma,
the attempt to detect signals from another technical civi-
lization on a planet of a nearby star. SETI, the Search for
Extraterrestrial Intelligence, is the present-day successor
of that project. “How could you communicate if you
found such a civilization?” he asked, assuming both
interlocutors would have the patience to wait for the
signals to be transmitted back and forth. I suggested that
we might try beep, beep-beep, beep-beep-beep, for 1, 2,
3, and so forth, and then perhaps 1, 2, 3,..., 92 for the
stable (except 41 and 63) chemical elements, etc., etc.
“Wait,” said the sous-directeur, “That is absurd. The

~umber 92 would mean nothing to them...why, if they

aave 92 chemical elements, then they must also have the
Eiffel Tower and Brigitte Bardot.”

That is how I became acquainted with the fact that
French schools taught a kind of neo-Kantian philosophy,
in which the laws of nature are nothing but Kantian
“categories” used by the human mind to grasp reality.
[Many also taught, by the way, that artistic criticism is
absolute and not a matter of taste, while the opinion that
artistic standards are relative was treated as a feature of
Anglo-Saxon pragmatism.]

Another notion of a quite different kind, far more
Platonic, is rife in mathematical circles in France (and
elsewhere). That is the idea that the structures and ob-
jects of mathematics, say Lie groups, have a reality, that
they exist in a sense, somewhere beyond space and time.
[It is easy to see how one can come to think that way.
Start with the positive integers—they certainly exist, in
the sense of being used to count things. Number theory
—OK. Zero and negative numbers—why not? Fractions,
square roots? Solutions of algebraic equations in com-
plex numbers? Probably—one is on a slippery slope.]

These two points of view are argued in a book,
Matiere a Pensée, published recently by the biologist
Jean-Pierre Changeux and the mathematician Alain

_—Connes. I shall not inflict all their philosophical argu-

ients on this congenial group, and anyway I have never
studied them carefully. Let me say merely that the au-

thors do raise the question of what is the role of math-
ematical theory in our understanding of the world, espe-
cially the physical world.

I like to put the relevant questions in the following
form: Would advanced complex adaptive systems on
another planet come up with anything like our math-
ematics or anything like our mathematical theories of
physical processes, or both? At present, we can only
speculate about the answers, but the questions are deep
and meaningful.

Eugene Wigner once wrote an article entitled, “The
Unreasonable Effectiveness of Mathematics in the Natu-
ral Sciences.” I don’t know what he wrote in the article,
but it is certainly a fact that up to now, especially in the
domain of fundamental physics, we have had striking
success with our use of mathematics.

Sometimes, as with Fourier series, the physicist has
to invent the mathematical trick and the mathematicians
later formalize and adapt it. Sometimes, as with
Heisenberg and matrices, the concept is already known
to mathematicians and physicists, but not to the particu-
lar theoretician involved, he re-invents it. Often, as with
Einstein, the physicist senses what he wants and asks a
mathematician to provide it—in the case of the equation
describing general relativistic gravitation, Einstein asked
his old classmate, Marcel Grossmann, for the tensor he
needed, and thus the Ricci tensor became the Ricci-
Einstein tensor.

More recently, abstract mathematics reached out in
so many directions and became so seemingly abstruse
that it appeared to have left physics far behind, so that
among all the new structures being explored by math-
ematicians, the fraction that would even be of any inter-
est to science would be so small as not to make it worth
the time of a scientist to study them.

But all that has changed in the last decade or two. It
has turned out that the apparent divergence of pure math-
ematics from science was partly an illusion produced by
the obscurantist, ultra-rigorous language used by math-
ematicians, especially those of a Bourbakian persuasion,
and by their reluctance to write up non-trivial examples
in explicit detail. When demystified, large chunks of
modern mathematics turn out to be connected with phys-
ics and other sciences, and these chunks are mostly in or
near the most prestigious parts of mathematics, such as
differential topology, where geometry, analysis, and al-
gebra come together. Pure mathematics and science are
finally being reunited and, mercifully, the Bourbaki
plague is dying out. (In the late Soviet Union, they never
succumbed to it in the first place.)

An anecdote will illustrate the situation during the
’50s. In 1955, at the Institute for Advanced Study in
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Princeton, Frank Yang was discussing with other physi-
cists the recently developed Yang-Mills quantum field
theory. At the same time, S. S. Chern was lecturing on
pure mathematics. Not only did Frank attend some of the
lectures, but he and Chern were old friends, their chil-
dren played together, and Chern had been one of Frank’s
teachers in China; neither of them noticed that Chern’s
lectures on fiber bundles were basically concerned with
the same subject as Frank’s lectures on Yang-Mills
theory! In fact, they didn’t learn about this equivalence
for many years.

Yang-Mills theory, from the physics point of view,
was a generalization of quantum electrodynamics from
the gauge group U, to the gauge group SU, with non-
commuting charges. Later, we generalized it to all prod-
ucts of U, factors and simple compact Lie groups, in-
cluding SU,. Today the “standard model” of elementary
particle physics, apart from gravitation, is based on SU,
x SU, x U,. Moreover, Einsteinian gravitation has strong
parallels with generalized Yang-Mills theory, although
the gravitation theory is based on the non-compact
Lorentz group and involves a tensor instead of a vector
field. What does it mean that this progression from one
gauge group to another has worked so well? Are we
really dealing with something peculiar to the human
mind or with a phenomenon so deeply rooted in the
properties of nature that any advanced complex adaptive
system would be likely to follow similar paths?

A related set of issues was discussed more than
three hundred years ago, especially by Isaac Newton.
Children learn that he thought of the theory of universal
gravitation when an apple fell on his head. Well, not on
his head, but nearby, anyway.

Historians of science are not sure whether to credit
the apple at all, but they admit that there could have been
an apple. As you know, in 1665 the University of Cam-
bridge closed up on account of the plague and sent
everyone home, including Newton, a fresh B.A., who
went back to Woolsthorpe, Lincolnshire. There, during
1665 and 1666, he thought a little about integration and
differentiation, a little more about the law of gravitation,
and a lot about the laws of motion. Moreover, he carried
out the experiment showing that white light is made up
of the colors of the rainbow. While historians of science
now emphasize that he didn’t completely clear up all
these matters in one “annus mirabilis,” or “marvelous
year,” they admit that he made a good start on all of them
around this time. As my friend Marcia Southwick says,
he could have written a pretty impressive essay on “What
I Did During My Summer Vacation.”

As to the apple, there are four independent sources.
One of them, Conduitt, writes:

“In the year 1666 he retired again from
Cambridge...to his mother in Lincolnshire &
whilst he was musing in a garden it came into
his thought that the power of gravity (w® brought
an apple from the tree to the ground) was not
limited to a certain distance from the earth but
that this power must extend much farther than
was usually thought. Why not as high as the
moon said he to himself & if so that must influ-
ence her motion & perhaps retain her in orbit,
whereupon he fell a calculating what would be
the effect of that supposition but being absent
from books & taking the common estimate in
use among Geographers & our seamen before
Norwood had measured the earth, that 60 En-
glish miles were contained in one degree of
latitude on the surface of the Earth his computa-
tion did not agree with his theory & inclined
him then to entertain a notion that together with
the force of gravity there might be a mixture of
that force w* the moon would have if it was
carried along in a vortex....”

What interests us here is the extrapolation—if gravi-
tation applies on earth, why not extend it to the heavens

and use it to explain the force that keeps the moon in iF™™

orbit? Here is how Newton describes the idea muc.
later:

“How the great bodies of the earth Sun moon &
Planets gravitate towards one another what are
the laws & quantities of their gravitating forces
at all distances from them & how all the mo-
tions of those bodies are regulated by those
their gravities I shewed in my Mathematical
Principles of Philosophy to the satisfaction of
my readers: And if Nature be most simple &
fully consonant to her self she observes the
same method in regulating the motions of
smaller bodies which she doth in regulating
those of the greater. This principle of nature
being very remote from the conceptions of Phi-
losophers I forbore to describe it in that Book
least I should be accounted an extravagant freak
& so prejudice my Readers against all those
things which were the main designe of the
Book.”

Today some of us have the same concerns about
extrapolation as the ones to which Newton refers—Shelly
Glashow inveighs against superstring theory because in

embracing Einsteinian gravitation, along with the othe™ ™

forces, it achieves its synthesis around the Planck mas.
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of 2 x 10" GeV, larger by a gigantic factor than any
energy at which particle physics experiments are carried
out. But he and others were in the forefront of extrapo-
lating the standard model SU, x SU, x U, to a unified
Yang-Mills theory based on SU,, in which the unifica-
tion (without gravitation) is achieved around 10" or 105
GeV, which lies most of the way to the Planck mass.
Moreover, Shelly and others have alleged that nothing
much could happen in between present energies and 10
GeV or so—there would just be a desert.

Well, here in Arizona we know that deserts are not
necessarily empty, and that they are often very rich in
plant and animal life, so the gap between our experimen-
tal energies of a few hundred GeV and 10" GeV may
well contain some interesting flora and fauna, especially
the supersymmetric partners of the known particles—as
suggested by superstring theory.

In fact, the unified super-Yang-Mills extrapolation
works much better than the straight unified Yang-Mills
theory (what some people call, quite inappropriately in
my opinion, “grand unified theory™).

ematics with which we become fa-
miliar on account of its usefulness in
describing one layer suggests new
mathematics, some of which may
apply at the next layer—in fact even
the old mathematics may still be use-
ful at the next layer. These generali-
zations may be performed either by
theoretical physicists or by mathema-
ticians. If pure mathematicians are
exploring ambitious generalizations
of known mathematical structures,
they will surely run across some of
the new ones that are needed—along
with much more besides.
Ultimately, then, we can argue
that it is the self-similarity of the
structure of fundamental physical law
that dictates the continuing useful-
ness of mathematics. Suppose that
the fundamental theory of the el-
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ementary particles and their interactions is really het-
erotic superstring theory. It has a huge set of symmetries,
including the conformal string symmetries that encom-
pass the bootstrap principle and general relativity, and an
internal symmetry group E, x E, that undergoes sponta-
neous symmetry breaking. The outer layers of the onion
show gravitation and electromagnetism. Penetrating a
little further turns up SU, x U, SU, of color, and the
Bootstrap idea. And so it goes on. The mathematics at
each level is not usually identical with that at the next
level, but it has a strong family relationship. The succes-
sive renormalizable approximate theories, by the way,
represent autonomous shells that depend on what is in-
side only through the renormalized parameters.

At the modest level of earlier science, this sort of
self-similarity is strikingly apparent. Electricity, gravita-
tion, and magnetism all have the same 1/ force, and
Newton, as we have seen, suggested that there might be
some short-range forces as well. Perhaps in some lost
manuscript he proposed the Yukawa potential!

Now that scientists and mathematicians are paying
attention to scaling phenomena, we see in the study of
complex systems astonishing power laws extending over
many orders of magnitude. Often the underlying mecha-
nism is changing while the power law still holds, as for
the cosmic ray energy spectrum, the advance of tech-
nologies over time, and so forth.

The renormalization group, which we invented for
renormalizable quantum field theory, turns out to apply
not only to critical phenomena in condensed matter, but
to numerous other far-flung subjects as well.

The biological and social sciences are just as much

But, to return to Newton, he was not thinking only
of extrapolation. He returns repeatedly in his writings to
the idea that Nature is consonant and conformable to

herself in more general ways. From the Opticks:

“For Nature is very consonant and conformable
to her self...For we must learn from the
Phaenomena of Nature what Bodies attract one
another, and what are the Laws and Properties
of the Attraction, before we enquire the Cause
by which the Attraction is perform’d. The At-
tractions of Gravity, Magnetism, and Electric-
ity, reach to very sensible distances, and so
have been observed by vulgar Eyes, and there
may be others which reach to so small distances
as hitherto escape Observation; and perhaps elec-
trical Attraction may reach to such small dis-
tances, even without being excited by Friction.”

Thus he thought of the laws as exhibiting
conformability among themselves as well as within each
one, just the kind of idea that we have followed in going
from electrodynamics to QCD and the electroweak theory
and then onward to unified Yang-Mills theory and, with
gravitation included, to the superstring theory.

If we modernize Newton’s conception a bit, we
could say that the laws of Nature exhibit a certain amount
of self-similarity and not, of course, perfect scaling, but
rather the kind of thing one sees in the Mandelbrot
fractal set. So, in peeling the skins off the onion of

undamental physics, we encounter certain similarities
between one layer and the next. As a result, the math-
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The Simply Complex: Trendy Buzzword or

Emerging New Science?

by John Casti

A few years ago, I saw a cartoon showing two
scientists arguing over the the meaning of complexity. In
suitably dogmatic terms the first scientist asserted, “Com-
plexity is what you don’t understand.” Responding to
this temerarious claim, his colleague replied, “You don’t
understand complexity.” This circular exchange mirrors
perfectly to my eye how the informal term “complexity”
has been bandied about in recent years—especially within
the normally flinty-eyed community of system scien-
tists—as a characterization of just about everything from
aardvarkology to zymurgology. Without benefit of any-
thing even beginning to resemble a definition, we find
the putative “science” of complexity being described in
terms rosy enough to emit heat: adaptive behavior, cha-
otic dynamics, massively parallel computation, self-or-
ganization, and even on to the creation of life itself
within the cozy confines of a machine. And to add a final
touch of spice, all of this hoopla often comes wrapped up
in language vague enough to warm the heart of any
Continental philosopher. But useful as all this fuzziness
is for fending off cocktail-party bores and writing re-
search grant proposals, it becomes a major impediment
when we start talking seriously about a “science” of
complex systems. The problem is that an integral part of
transforming complexity (or anything else) into a sci-
ence involves making that which is fuzzy precise, not the
other way around, an exercise we might more compactly
express as “formalizing the informal.” This short essay
represents an exploration into some of the dimensions of
this problem, as we try to “scientify” the simply complex.

Still More Complex

The science-fiction writer Poul Anderson once re-
marked, “I have yet to see any problem, however com-
plicated, which, when you looked at it the right way, did
not become still more complicated.” Substituting the
word “complex” for “complicated,” this statement serves
admirably to capture the two key points needed to under-
stand what’s at issue in turning the casual, everyday
notion of a complex system into something resembling
an actual science.

L]
...complexity is an inherently subjective
concept; what's complex depends upon
how you look at it...complexity resides as
much in the eye of the beholder as it does
in the structure and behavior of a system

itself.
. |

The first is the realization that complexity is an
inherently subjective concept; what’s complex depends
upon how you look. So when we speak of something
being “complex,” what we’re really doing is making use,
of everyday language to express a feeling or impressiol
that we characterize by the label “complex.” But the
meaning of something depends not only upon the lan-
guage in which it is expressed (i.e., the code), the me-
dium of transmission, and the message, but also upon the
context. In short, meaning is bound up in the whole

Nature
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involved in these discoveries of scaling behavior as the
physical sciences. We are always dealing with Nature
consonant and conformable to herself, not only within
scaling behavior but also in the occurrence of similar
phenomenological laws in a plethora of disparate areas.
So the approximate self-similarity of the laws of nature
runs the gamut from the simple underlying laws of fun-
damental physics to the phenomenological laws of the
most complex phenomena. No wonder our mathematics
keeps working so well in the sciences, when self-similar-
ity is so widespread.

Of course there may be something important here
about the nature of mathematics itself. In connection
with that, let me close by paraphrasing some wonderful
remarks made by that brilliant and modest theoretical
physicist Feza Giirsey on the occasion of his receiving,
at the University of Miami, not the valuable kind of prize
he deserves, but half of the $1,000 Oppenheimer Prize.

He said, more or less, that he had achieved some
success by pointing, often before other theorists, to math-
ematical structures that would be useful in the near fu-
ture in elementary particle physics. But often he hadn’t
had any clear idea of exactly how or why these math-
ematical methods would be used. He compared himself
with Inspector Clouseau, bumbling along, bumping into
walls, but somehow finally pointing to the right sus-
pects. Why, he asked, did the Inspector Clouseau method
work? Maybe, he suggested, because such mathematical
structures are comparatively rare, so that it is possible to
find and identify something like the exceptional group
E, as an object of interest simply because structures with
its remarkable properties are not thick on the ground.
Thus it may be that the character of mathematics plays a

role in our story, along with Nature consonant and CON=~

formable to herself.




