Журнальный клуб Интелрос » VOX » №23, 2017
Аннотация: В статье намечен путь решения следующей проблемы: от чего зависит эффективность математики в физике. Стратегия состоит, прежде всего, в идентификации процедур редукционизма, совершенных с физическими процессами для того, чтобы они соответствовали математике. По мере того, как эта процедура начинает затруднять понимание реальной связи между материей и математикой, возникает необходимость устранения редукционизма для ее восстановления. Мы сталкиваемся с необходимостью поиска математических элементов в природе, как если бы в физике никогда не было эффективной математики. В этих поисках мы должны полагаться только лишь на эксперимент. Автор опирается на два основополагающих понятия Аристотелевской философии природы - понятия субстанции и динамики, сверяясь и стараясь тщательно проверить накопленный физикой опыт. Гилеморфная структура элементарных частиц, которые рассматриваются как базис материальных субстанций, является источником для понимания динамического порядка материальных вещей в целом. Динамический порядок, в свою очередь, - вполне вероятно, - отражается в математических формулах. Это - нестандартный подход, ибо сейчас к анализу проблемы эффективности математики в физике применяется, как правило, обычный рамочный подход – научный реализм. Он позволяет поставить вопрос о причинах успехов существующих физико-математических теорий, исследует эти теории и некоторые методологические основания, но при этом не озадачивается вопросом происхождения этих теорий. В частности, при таком подходе не рассматривается возможность того, что сами эти теории могут исходить, хотя бы частично, из материальных вещей, на которые они ссылаются. Именно этот подход, подразумевающий возможность происхождения теорий из материальных вещей, здесь и предлагается. Именно этот подход является подходом естественного (природного) реализма, выдающимся представителем которого является Аристотель.
Ключевые слова: Аристотель, динамика, элементарные частицы, опыт, гилеморфизм, математика, природный реализм, физика, научный реализм, субстанция
________________________________________________________________________________________________________________________________________
Перевод с английского: Коняев С.Н., Институт философии РАН, snk-05@mail.ru
Перевод осуществлен по: Larenz R. Substance and dynamics: two elements of Aristotelian-thomistic philosophy of nature in the foundation of mathematics in physics // Studia Gilsoniana 6:3 (2017). pp. 451 – 483 // http://www.gilsonsociety.com/files/451-483-Larenz.pdf
________________________________________________________________________________________________________________________________________
Substance and dynamics: two elements of Aristotelian-thomistic philosophy of nature in the foundation of mathematics in physics
Larenz R., Helsinky
Abstract: The article aims at proposing a way of solution to the problem why mathematics is efficient in physics. Its strategy consists in, first, identifying servere reductionisms performed on physical processes in order to have them correspond to mathematics. As this makes it impossible to understand the real relationship between matter and mathematics, a necessary step on the way to an understanding is to abandon the reductionisms from the very outset. Consequently, one is faced with the need of searching for mathematical elements in nature, as if there never had been any successful mathematics in physics. And for this search, one has to rely on experience alone. To this end, the article takes its inspiration from two pillars of Aristotelian philosophy of nature, the notions of ‘substance’ and ‘dynamics’, together with a careful examination of the treasure of accumulated experience in physics. Upon this basis, the hylomorphic structure of elementary particles, which are considered to be at the basis of all material substances, is the source for the most common features of the dynamical order of material things in general. This dynamical order, in turn, is quite likely to be reflected in mathematical terms. This is a novel approach because, at present, the most common framework for dealing with the question of mathematics in physics is Scientific Realism. It addresses the question why the existent physico-mathematical theories are successful. In order to find an answer, it starts from these theories and some methodological considerations, but does not address the question of where these theories stem from. In particular, it does not consider the possibility that these theories might, at least in part, stem from the material things they are referring to. The latter approach is what is suggested here. It is that of Natural Realism, of which Aristotle is an eminent representative.